Interview with I-Corps Graduate: TC Poly

From left to right: Thomas Bougher, Prof. Baratunde Cola, Matt Smith, and Jon Goldman

TC Poly is developing the world’s highest thermal conductivity pure plastic material for thermal management application in the batteries and LED markets. The proprietary material boasts a thermal conductivity 25x greater than conventional plastics, allowing for advanced cooling capabilities. The material is lightweight, electrically insulating, and can be processed using traditional injection molding techniques. By replacing standard plastic components with our material, customers can achieve enhanced thermal management capabilities and unrivaled design flexibility.

Heat removal in electronics is increasingly difficult because of the ever-growing computing power and the limited space for heat sinks as electronics become smaller and lighter. Hence, thermally conductive plastics have emerged as an attractive class of low-cost materials to replace traditional plastics and reduce device operating temperatures.  The market for thermally conductive plastics is expected to grow to $1.9 billion as manufacturers seek out more cost-effective heat dissipation solutions. Through customer discovery in the NSF I-Corps program, TCPoly has learned that the market is being driven by the need to reduce chip, battery, and touch temperatures in consumer electronic devices.  The below figure demonstrates the power of the TCP casing to dissipate heat. A large hot spot occurs when a local heat source is applied underneath a normal non-conductive plastic (Figure a). A common solution in consumer electronics is to add a metal plate underneath the plastic adding cost, complexity, and weight to the casing (Figure b). By making the electronics casing out of the TCP material (Figure c), the temperature is reduced to the same level or lower than with a metal plate but without the additional weight and complexity. In this simulation, by switching to the TCP material the casing temperature is reduced from 68°C to 29°C without adding any additional weight or manufacturing steps to the electronics part. This temperature reduction has been verified in lab testing and TCPoly is now working with several partners in the consumer electronics industry to develop prototypes for applications testing.

Interview with Co-Founder Thomas Baugher

Can you tell me a little bit more about your background?
I’m from Ohio originally by way of Indiana and Texas. I went to Purdue for undergraduate and UT-Austin for my Master’s. Prior to coming to Georgia Tech for my Ph.D. I spent 5 years working as an automotive engineer. I loved cars, but I really wanted to work on a next-generation technology, so I decided to come back to school to get my degree and do research in nanomaterials. Research in nanotechnology is so motivating to me because the possibilities are so big. In a refined technology like an internal combustion engine improvements of a single percent are meaningful, while in making a new nanomaterial you might change a property by a factor of 50. I also find the startup environment exciting, because things can be very dynamic. I get to make new materials, build test rigs, write code, talk to customers, and develop a strategy. Constantly changing hats keeps things fun.

What sparked the idea for TCPoly? 
My co-founder Matt Smith and I were both working on thermally conductive polymers in the same graduate research group for four years, and we were both interested in commercialization. Prior to my graduation at the end of 2015, we decided we should try I-Corps to see if our idea had any merit for commercialization. We found that the initial application of our technology probably wouldn’t have good traction, but that it could easily be adapted to a different application. I decided to stay at GT instead of taking a job at a semiconductor company on the West Coast because I think we have a great chance at being successful in commercializing this technology. Matt is a born entrepreneur, and he enrolled in graduate school with the intention of starting a company; he’s been leveraging GT’s great resources throughout his graduate studies including VentureLab startup gauntlet, ATDC seminars, and the TiGER program to help us get a head start on our company.

How do you describe your technology to someone who does not have a background in tech? 
We are making plastics that can keep your electronic devices cooler. Our material can be used for a variety of applications such as the case of a cell phone, the frame of a cable box, an LED light housing, or the casing of a battery. By changing the structure of these materials we can make them conduct heat more like a metal than a plastic, but lighter and less expensive.

During the I-Corps program, what did you find most surprising? Did you have a major pivot? 
We had been working with several major electronics companies throughout our research so we felt we understood the industry fairly well and the challenges of commercialization. During the I-Corps program, we quickly realized that we understood the some of the technical challenges, but not the business side or the degree of cost sensitivity. We did go through a major pivot at the end of the program. We stayed in the electronics market but shifted the way our materials would be used. That pivot led us to the current version of the technology we’re making today.

What was the most consistent feedback that you got from your Customer Discovery? 
I-Corps was a very valuable experience for us because it taught us to look for how our material can enable parts to be re-engineered for better performance and cost savings. Thinking in terms of value propositions instead of technical specifications as the instructors would say. The top item of importance was consistently cost. Even when an engineer would get really excited about how our technology would enable better performance of his device, the sentence would still end with “…and if you could make it cheaper too, that’d be great!” We’ve carried that lesson into the way we’re currently working on scaling our material to keep costs as low as possible.

What is your goal for TCPoly? 
I think we are at an exciting time to be starting a company with a new type of plastics for electronic devices. People in industry are only now starting to think that maybe the housing of a device could help dissipate heat, and our material is well-suited to become established on the ground level of this shift in thinking for electronics packaging. With the great resources around Atlanta and GT and some great mentors, my partner and I want to grow this business in Georgia and see how far we can take it.

Georgia Tech startups leading the way

In January 2016, Google Capital led a $75 million funding round for Pindrop Security, a Georgia Tech spinout. In June, another Georgia Tech spinout, Clearside Biomedical, focused on drug delivery, went public and raised $60 million. VentureLab is proud to be part of the innovation success ecosystem, which brings business experience, funding, and people together to create startups based on Georgia Tech research.

To understand how these large successes happen, here is Clearside’s story: Mark Prausnitz received his doctorate from the Massachusetts Institute of Technology. He is a Georgia Tech Regents Professor, has a large lab filled with researchers and is credited with more than 30 patents. He runs Georgia Tech’s Laboratory for Drug Delivery. To quote his lab’s website:

“Dr. Prausnitz and his colleagues carry out research on biophysical methods of drug delivery, which employ microneedles, ultrasound, lasers, electric fields, heat, convective forces and other physical means to control the transport of drugs, proteins, genes and vaccines into and within the body.”

Prausnitz’ approach to drug delivery is disruptive, innovative and constantly evolving. He collaborates with researchers at Emory, the Centers for Disease Control, and major pharmaceutical companies. In one of his many collaborations he worked with the late Dr. Henry Edelhauser, former Emory Eye Center director. Together, they developed a microneedle to solve a drug delivery problem for patients who suffer from eye diseases. The challenge was to control drug doses to a small area in the back of the eye. By delivering the drug in such a targeted fashion, patient outcomes were expected to be better because of a smaller dose resulting in fewer adverse side effects.

VentureLab worked with Prausnitz and Dr. Edelhauser to arrange a series of Georgia Research Alliance commercialization grants in 2010 and 2011. When the technology proved capable in laboratory tests, VentureLab then helped identify CEO Dan White in 2011 and with his leadership, Hatteras Ventures invested $4mm in founding equity. The IPO came 5 years later. More innovations for a variety of diseases are expected from Clearside.

Future or current entrepreneurs, researchers and business leaders are welcome to become part of this Georgia Tech VentureLab process. Please reach out to any of our Principals at or